Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis.
نویسندگان
چکیده
This is the first study to report the use of infusion fluids for particle-mediated gene delivery with DNA-immobilized calcium phosphate (CaP) nanoparticles (NPs). In conventional CaP systems, CaP NPs are fabricated in labile supersaturated CaP solutions which are prepared from chemical reagents. In the present study, we fabricated CaP NPs via coprecipitation in labile supersaturated CaP solutions that were prepared from infusion fluids (even the water used was of injectable quality) instead of chemical reagents and demonstrated their gene delivery capabilities for the hard to transfect pluripotent stem cell (C3H10T1/2) along with the easy to transfect CHO-K1 cell. To achieve a high gene delivery capability by keeping the high safety level of our system intact, we varied the process parameters: coprecipitation temperature and time, along with the Ca and P concentrations of the CaP solution, without using additive agents (e.g. surfactants) other than infusion fluids and plasmids. The optimization of these process parameters led to a higher gene delivery capability compared with that of a commercial CaP system for both types of cells. MTT and protein assays showed that both our system and the commercial CaP system were not cytotoxic to both types of cells. Our CaP system has the advantages of high biological safety (due to injectable source materials), high serum-resistance, and relatively high and controllable gene delivery capability, depending on the process parameters. Thus, the present system warrants consideration for gene delivery applications.
منابع مشابه
Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency
BACKGROUND The purpose of this study was to develop calcium phosphate nanocomposite particles encapsulating plasmid DNA (CP-pDNA) nanoparticles as a nonviral vector for gene delivery. METHODS CP-pDNA nanoparticles employing plasmid transforming growth factor beta 1 (TGF-β1) were prepared and characterized. The transfection efficiency and cell viability of the CP-pDNA nanoparticles were evalua...
متن کاملOptimization of conditions for gene delivery system based on PEI
Objective(s): PEI based nanoparticle (NP) due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of ...
متن کاملNon-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.
Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and bioactivity of the transfection. We also intended to investigate the behavior of transfected cel...
متن کاملIn vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملGlutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation.
RNA interference (RNAi)-based therapy using small interfering RNA (siRNA) exhibits great potential to treat diseases. Although calcium phosphate (CaP)-based systems are attractive options to deliver nucleic acids due to their good biocompatibility and high affinity with nucleic acids, they are limited by uncontrollable particle formation and inconsistent transfection efficiencies. In this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials science
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2017